Statistical physics of independent component analysis
نویسندگان
چکیده
منابع مشابه
Statistical physics of independent component analysis
– Statistical physics is used to investigate independent component analysis with polynomial contrast functions. While the replica method fails, an adapted cavity approach yields valid results. The learning curves, obtained in a suitable thermodynamic limit, display a first order phase transition from poor to perfect generalization. During the last decade, independent component analysis (ICA) ha...
متن کاملIndependent Component Analysis in Statistical Shape Models
Statistical shape models generally use Principal Component Analysis (PCA) to describe the main directions of shape variation in a training set of example shapes. However, PCA assumes a number of restrictions on the data that do not always hold. In this paper we explore the use of an alternative shape decomposition, Independent Component Analysis (ICA), which does not assume a Gaussian distribut...
متن کاملRank based Least-squares Independent Component Analysis
In this paper, we propose a nonparametric rank-based alternative to the least-squares independent component analysis algorithm developed. The basic idea is to estimate the squared-loss mutual information, which used as the objective function of the algorithm, based on its copula density version. Therefore, no marginal densities have to be estimated. We provide empirical evaluation of th...
متن کاملStatistical Analysis of Functional MRI Data using Independent Component Analysis
Functional magnetic resonance imaging (fMRI) is a technique to map the brain, anatomically as well as physiologically, which does not require any invasive analysis. In order to obtain brain activation maps, the subject under study must perform a task or be exposed to an external stimulus. At the same time a large amount of images are acquired using ultra-fast sequences through magnetic resonanc...
متن کاملStatistical Dynamics of On-line Independent Component Analysis
The learning dynamics of on-line independent component analysis is analysed in the limit of large data dimension. We study a simple Hebbian learning algorithm that can be used to separate out a small number of non-Gaussian components from a high-dimensional data set. The de-mixing matrix parameters are confined to a Stiefel manifold of tall, orthogonal matrices and we introduce a natural gradie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Europhysics Letters (EPL)
سال: 2003
ISSN: 0295-5075,1286-4854
DOI: 10.1209/epl/i2003-00611-3